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We demonstrate that the formation of a chiral d-density wave state generates a topological Meissner effect
�TME� in the absence of any kind of superconductivity. The TME is identical to the usual superconducting
Meissner effect, but it appears only for magnetic fields perpendicular to the plane while it is absent for in-plane
fields. The observed enhanced diamagnetic signals in the nonsuperconducting pseudogap regime of the cu-
prates may find an alternative interpretation in terms of the TME, originating from a chiral d-density wave
pseudogap.

DOI: 10.1103/PhysRevB.78.220509 PACS number�s�: 74.72.�h, 75.20.�g, 71.27.�a

The Meissner effect is considered to be the most direct
signature of superconductivity.1 However, the surprising ob-
servations of such enhanced diamagnetic signals2 well above
the superconducting �SC� transition temperature in the
pseudogap regime of the cuprates3 constitute a fascinating
puzzle. There are two proposals for the nature of this regime
that appear to dominate. The first associates the pseudogap
with a dx2−y2-density wave �DDW�,4,5 also called orbital
antiferromagnet,6,7 which normally competes with supercon-
ductivity. The second associates the pseudogap with sponta-
neous vortex-antivortex unbinding, leading to incoherent
superconductivity8 that should persist well above the super-
conducting Tc. This theory is reminiscent of the well-known
Kosterlitz-Thouless transition.9

The available angle-resolved photoemission spectroscopy
�ARPES� �Ref. 10� and scanning tunneling microscopy
�STM� �Ref. 11� experiments cannot differentiate a SC from
a density wave �DW� gap and therefore appear somehow
incapable of directly settling the issue. On the other hand, the
unusual Nernst effect and, most importantly, the enhanced
diamagnetic signal that accompanies it for a very large tem-
perature region above the SC critical temperature2 have been
considered as a major argument in favor of the incoherent SC
scenario. In fact, the enhanced diamagnetism is viewed as a
signature of the usual Meissner effect associated solely with
the SC state and would therefore contradict the dx2−y2-density
wave scenario since no Meissner effect was expected in that
case.7

In this Rapid Communication we put forward the topo-
logical Meissner effect �TME� that results from a chiral dxy
+ idx2−y2-density wave �CDDW� state. In fact, the Nernst re-
gion of the pseudogap regime may well be associated with a
CDDW. The most intriguing property of a CDDW is that
parity �P�–time-reversal �T� violation induces Chern-Simons
terms in the effective action of the electromagnetic field,
providing the possibility of the TME and the spontaneous
quantum Hall effect �SQHE� earlier discussed.12–18 As we
shall demonstrate, the TME is described by the same equa-
tion we find in the usual Meissner effect of a superconductor,
though its origin is radically different. In our system we en-
counter the realization of parity anomaly,13,19 with the
emerging Chern-Simons terms providing a topological mass
to the electromagnetic field, in a gauge-invariant manner.20,21

Moreover, the possession of chirality perpendicular to the

plane implies that the TME is strongly anisotropic. Particu-
larly, it takes place for magnetic fields perpendicular to the
plane while it is absent for in-plane fields, in accordance
with the experimental observations.2 Note finally that a chiral
d-density wave state has also been shown recently22 to ex-
plain the experimental results concerning the polar Kerr ef-
fect in YBa2Cu3O6+x �YBCO�.23

In order to demonstrate how the TME arises, we shall
consider the following BCS Hamiltonian for the CDDW:

HCDDW =
1

2�
k

��kck
†ck+Q + �k

�ck+Q
† ck� , �1�

which describes a dxy + idx2−y2 state characterized by the wave
vector Q= �� ,��, which is commensurate to the lattice �k
+2Q=k�. Since spin degrees of freedom do not get involved
we have considered spinless electrons so that all our results
will refer to one spin component. Furthermore, we use g��

= �1,−1,−1�, ki=k= �kx ,ky�, k�=k= �� ,k�, q�=q= �q0 ,q�, �
=0,1 ,2, i=1,2, e�0, and 	=1 and we assume that repeated
indices are summed. In the derivation of the Chern-Simons
terms we shall restrict ourselves to the zero-temperature case
while necessary extensions to finite temperatures will be af-
terward performed. In addition, the summation in k space is
all over the whole first Brillouin zone rather than the reduced
Brillouin zone. This implies that the operators ck and ck+Q do
not describe independent degrees of freedom.

In Eq. �1� we have introduced the CDDW order parameter
�k=
� sin kx sin ky + i��cos kx−cos ky�, where � is the
modulus of the idx2−y2 order parameter and 
 defines the
relative magnitude of the two components and also deter-
mines the direction of the chirality of the state. The chiral
character of the state implies the existence of an intrinsic
angular momentum in k space, perpendicular to the plane,
originating from P-T violation. Specifically, the dx2−y2 com-
ponent violates T as it is imaginary, while the dxy component
is odd under P in two dimensions, which is defined as
�kx ,ky�→ �kx ,−ky�.

In order to obtain the total electronic Hamiltonian H, we
have to add the corresponding kinetic part Hkin. For the ki-
netic part we keep only the nearest-neighbor hopping term
�k=−t�cos kx+cos ky� satisfying the nesting condition �k+Q
=−�k, while we also set the chemical potential equal to zero.
Our approximation can be justified by considering that our
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system is close to half-filling. Under these conditions the
excitation spectrum consists of two bands which are fully
gapped, leading to the topological quantization of the Hall
conductance,12–18 which is the coefficient of the Chern-
Simons terms. Omitting the next-nearest-neighbor hopping
term �k= t� cos kx cos ky does not alter qualitatively the oc-
currence of the TME. However, its inclusion would destroy
the quantization of the Hall conductance, as in this case, the
system is not fully gapped. Similar effects would arise in the
presence of disorder or by including the z-axis hopping term.

Under these conditions, the total Hamiltonian of the
system becomes H= 1

2�k��k�ck
†ck−ck+Q

† ck+Q�+ ��kck
†ck+Q

+H.c.��. We obtain a compact representation of H by intro-
ducing the spinor 
k

†= 1
�2

�ck
†ck+Q

† �, the isospin Pauli matrices
�, and the vector gk��Re �k ,−Im �k ,�k�. This yields H
=�k
k

†gk ·�
k. The latter indicates that the ground state of
the system depends on the orientation of the g vector in
isospin space. As a result, this Hamiltonian supports skyr-
mion solutions which imply the presence of a Chern-Simons
action �see, e.g., Ref. 18�.

To reveal the emerging Chern-Simons terms, we have
to take into account the fluctuations of the U�1� gauge field
A�. We add to the Hamiltonian the term

Hem =� d2q
�2��2�k


k+q
† �k+q,k

� A��q�
k

−� d2q
�2��2�k


k+q
† e2

2mAi�− q�Ai�q�
k,

which describes the interaction of the gauge field with the
electrons. We have introduced the paramagnetic interaction
vertex �k+q,k

� =−�e ,e �

�ki gk ·��, where �=0,1 ,2 and i=1,2. At
the one-loop level, the effective action Sem is given by the
relation Sem= 1

2	 d3q
�2��3 A��−q�����q�A��q�, with the polariza-

tion tensor ���, defined as ����q�
= i

2	kTr�Gk�k,k+q
� Gk+q�k+q,k

� �− e2

m �e�i,j. �e is the two-
dimensional electronic density �without including spin�, Tr
denotes trace over isospin indices, Gk is the CDDW fermi-
onic propagator, and we have used the abbreviation 	k

=	 d�
2��k. Computing ��� up to linear order in q yields the

Chern-Simons action,

SCS =� d3x
�xy

4
����A�F��, �2�

with F��=��A�−��A�. The coefficient of the Chern-Simons
action is the Hall conductance �xy. It can be shown that it is
a topological invariant, reflecting the existence of a topologi-
cally nontrivial P-T violating ground state �see, e.g., Ref.
18�. Using Eq. �2� we obtain

�xy =
i

2!
�0ji

��0i

�qj =
e2

4�
N̂ =

e2

2�
, �3�

where we have introduced the winding number of the unit
vector ĝk=gk / 
gk
,

N̂ =
1

4�
� d2kĝk · � � ĝk

�kx
�

� ĝk

�ky
� , �4�

which is equal to 2 because the order-parameter components
are eigenfunctions of the angular momentum in k space with
eigenvalue l=2.

In the case of a perfect gap, the Hall conductance origi-

nates only from the chirality N̂ of the lower energy band,
Ek

−=−
gk
, which is fully occupied. At the same time, the
upper band, Ek

+= + 
gk
, is totally empty while it is character-
ized by opposite chirality. Apparently, if both bands were
equally occupied then �xy would be equal to zero. In the
general case, the two bands have different occupation num-
bers, n− and n+, yielding a nonquantized Hall conductance
�xy = e2

2� �n−−n+�. Deviations from nesting, disorder, or
chemical potential generally lead to such an effect. It is de-
sirable to comprehend, even approximately, the effect of
these parameters on the Hall conductance and the TME.

For this purpose we consider that a finite chemical poten-
tial is added to the system. We shall consider that its magni-
tude is of the order of min
gk
. This minimum is realized at
the points k0= �� �

2 , �
�
2 � when 
�1. In this case, we may

linearize the spectrum about these points to obtain an ap-
proximate analytical solution. The two energy bands are de-
scribed by the dispersions Ek

�=−���m2+ �v0 ·�k�2, with
m=min
gk
= 
gk0


, v0 the velocity at these points, and �k=k
−k0. If 
�
�m and ��0, hole pockets arise in the lower
band decreasing the full occupancy from n−=1 to n−=1
−nex, with nex the portion of the empty states. On the other
hand, if ��m, electron pockets emerge in the upper band,
raising its occupancy from zero. However, if we take into
consideration that the two bands have opposite chirality, it is
evident that in both cases the effect is the same. Conse-
quently, �xy���=�xy�1−nex�. The portion of the empty states
will be determined by the area of the ellipses defined by the
four hole pockets. Straightforward calculations yield the
simple relation

nex = ��2 − m2�/2�t� . �5�

We observe that for small values of 
�
, compared to t and �,
the effect of doping is negligible.

We are now in a position to obtain the equations of mo-
tion of the gauge field which will allow us to discuss the
TME in a Hall bar geometry setup. We consider that the Hall
bar has dimensions Lx=2lx , Ly �Lx extending from −lx to lx
on the x axis. The relation Ly �Lx indicates that there is
negligible y dependence of the gauge fields ��y =0�. To de-
scribe the dynamics of the propagating gauge field we have
to add in Eq. �2� the three-dimensional F2 kinetic term mul-
tiplied with the z-axis thickness d. The final gauge-field ac-
tion is

Sem =� d3x
−
d

4
F��F�� +

�

4
����A�F��� , �6�

where ��x�=�xy in the bulk of the CDDW, which is consid-
ered homogeneous. Variation in Sem yields
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��F�� +
�

2d
����F�� = −

1

2d
���������A�, �7�

ni�Fi�
�+
− Fi�
�−

� = +
�

2d
A�ni��i�
�, �8�

where n is the unit vector normal to the boundary surface �.
Equation �7� describes the dynamics of A�, while Eq. �8�
provides the boundary conditions. In both equations the
terms on the right-hand side stem from the fact that we are
dealing with a bounded system and the Chern-Simons action
is not gauge invariant on the boundary surfaces. In such
cases, gauge invariance is recovered by current-carrying chi-
ral edge modes.24 In the rest, we assume that such modes do
exist and extinguish the right-hand sides of Eqs. �7� and �8�.

Using the Coulomb gauge, � ·A=0, and considering the
static limit, we obtain the following equations:

�
�Ex

�x
−

�xy

d
Bz = 0,

1

�

�Bz

�x
−

�xy

d
Ex = 0, �9�

where we have included the electric permittivity � and the
magnetic permeability �. To obtain the TME, we apply a
magnetic field of magnitude B0 perpendicular to the sample.
The corresponding boundary conditions are Bz��lx�=B0. The
magnetic field satisfies the differential equation � �2

�x2 − 1
�2 �Bz

=0, with �= ���� /�� /�xy�d, the zero-temperature penetration
depth. This is indeed the equation we find in the case of a
superconductor. Notice that in our case only the z component
of the magnetic field is involved, implying that the TME
takes place only for magnetic fields perpendicular to the
plane. Solving the above equation using the aforementioned
boundary conditions yields Bz�x�=B0�cosh�x /��� /
cosh�lx /��. In Fig. 1�b� we plot the magnetic field versus the
ratio of lx /� throughout the whole sample. For lx�� we
have almost complete screening of the magnetic field. Inte-
gration of Bz over the whole sample yields the magnetization

M=M0�tanh�lx /��� / �lx /��, where we have introduced the
zero-temperature magnetization M0=B0LxLy, corresponding
to full penetration. One can readily obtain the dependence of
the magnetization on the chemical potential in the lx�� re-
gime. Using Eq. �5�, we find M����M0���� / lx=M / �1
−nex� and �M /M=nex / �1−nex�. As shown in Fig. 1�a�, the
relative change in the magnetization due to doping is unim-
portant for low doping, where it stands as �M /M�nex
��2 / t�.

We may also obtain the temperature dependence of the
magnetization by assuming that the penetration depth has
the usual BCS temperature dependence �� /��T��2=1
− �T /Tonset�4. Under this consideration, we obtain the magne-
tization curves shown in Fig. 2, which are identical to the
ones encountered in the superconducting case as expected
within this BCS treatment. If we compare the magnetization
curves of Fig. 2 with the experimental results in the cuprates,
we observe that our BCS approximation does not provide a
fully satisfactory fit. Nonetheless, a strict quantitative com-
parison calls for implementation of our picture that would be
more adapted to the cuprate materials.

A direct experimental verification of the presence of a
CDDW could be provided by the SQHE �Fig. 3�. If a CDDW
is present, a Hall voltage can be generated by the sole appli-
cation of a magnetic field. Specifically, we solve Eq. �9� with
boundary conditions Ex��lx�=0 and B��lx�= �B0, as in
Ref. 16. The spontaneously generated Hall voltage is VH

=vB0Lx�coth�lx /��−� / lx�, where v=1 /��� is the velocity of

FIG. 1. �Color online� �a� Influence of doping on the topological
Meissner effect. The relative change in magnetization hardly
reaches 1% in the presence of a small chemical potential ��
=20 meV and t=500 meV�. �b� The magnetic-field screening as a
function of the position on the Hall bar extending from −lx to +lx for
different values of the penetration depth � over lx. The magnetic
field is totally expelled from the sample when lx /��1 exactly as in
the superconducting case.

FIG. 2. �Color online� Magnetization ratio M /M0 versus tem-
perature T for different values of the ratio lx /�. For T�Tonset the
system is in a chiral d-density wave state. In a BCS approximation,
these curves are identical to the superconducting case.

FIG. 3. �Color online� Spontaneous quantum Hall effect as a
signature of the chiral d-density wave. Symmetrical surface currents
running along the y-axis create a magnetic-field distribution
B��lx�= �B0 leading to the spontaneous generation of a Hall volt-
age VH.
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light in the material. If lx��, VH=vB0Lx, which implies that
the applied magnetic field totally transforms into an electric
field. However, if there are a number of domains of different
chiralities in the sample, the SQHE is not an efficient probe
of the CDDW. Nevertheless, there is an alternative route in
detecting a CDDW. We refer to the gapless chiral edge
modes that exist on the boundary surfaces separating the
bulk from the vacuum. In order to restore the gauge invari-
ance of the Chern-Simons terms, these current-carrying
modes appear, constituting a direct indication of a
CDDW.16,17

Based on the P-T violation and the possibility of a spon-
taneous electric Hall response via the SQHE, we naturally
expect a CDDW to exhibit a spontaneous thermoelectric Hall
response,25 detectable in principle, in a Nernst measurement.
The unusual Nernst contribution has the same origin with the
TME and consequently they should scale. This implies that
the simultaneous presence of both enhanced Nernst and dia-
magnetic signals reported in the pseudogap regime is com-
patible with the assumption of a CDDW state.

In conclusion, we have proposed an alternative way of
generating a Meissner effect without invoking any manner of

superconductivity. In our picture, the existence of a CDDW
generates the TME due to P-T violation. The direction of the
chirality of the CDDW guarantees that the TME takes place
only for perpendicular to the plane magnetic fields, which is
in agreement with the diamagnetic observations in the
pseudogap regime of the cuprates. Moreover, a spontaneous
thermoelectric response that accompanies the TME is consis-
tent with the observed unusual Nernst signal. Note also that
the presence of a CDDW is compatible with the recently
observed quantum oscillations in YBCO �Ref. 26� that re-
ported Fermi-surface pockets in the nodal areas, possibly in-
dicating the doubling of the Brillouin zone. As a matter of
fact, associating a CDDW with the pseudogap regime seems
quite promising, and undoubtedly further theoretical investi-
gation should be performed.
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